Extension principles for tight wavelet frames of periodic functions
نویسندگان
چکیده
منابع مشابه
Extension Principles for Tight Wavelet Frames of Periodic Functions
A unitary extension principle for constructing normalized tight wavelet frames of periodic functions of one or higher dimensions is established. While the wavelets are nonstationary, the method much simplifies their construction by reducing it to a matrix extension problem that involves finite rows of complex numbers. Further flexibility is achieved by reformulating the result as an oblique ext...
متن کاملConstructions of periodic wavelet frames using extension principles ∗
Since the extension principles of constructing wavelet frames were presented, a lot of symmetric and compactly supported wavelet frames with high vanishing moments have been constructed. However the problem of constructing periodic wavelet frames with the help of extension principles is open. In this paper, we will construct tight periodic wavelet frames using the unitary extension principle an...
متن کاملTight Periodic Wavelet Frames and Approximation Orders
A systematic study on tight periodic wavelet frames and their approximation orders is conducted. We identify a necessary and sufficient condition, in terms of refinement masks, for applying the unitary extension principle for periodic functions to construct tight wavelet frames. Then a theory on the approximation orders of truncated tight frame series is established, which facilitates the const...
متن کاملtight frame approximation for multi-frames and super-frames
در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...
15 صفحه اولWavelets, multiwavelets and wavelet frames for periodic functions
Various results on constructing wavelets, multiwavelets and wavelet frames for periodic functions are reviewed. The orthonormal and Riesz bases as well as frames are constructed from sequences of subspaces called multiresolution analyses. These studies employ general frequency-based approaches facilitated by functions known as orthogonal splines and polyphase splines. While the focus is on the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 2008
ISSN: 1063-5203
DOI: 10.1016/j.acha.2007.10.004